Sed concupiscentia non naturalis omnino est infinita, quia sequitur rationem, ut dictum est, rationi autem competit in infinitum procedere; unde qui concupiscit divitias, potest eas concupiscere, non ad aliquem certum terminum, sed simpliciter: se divitem esse, quantumcumque potest.
Non-natural desire is altogether infinite, because, it follows from aspectual apprehension, as stated above (q30 a3), and it belongs to formal aspect to proceed to infinity; hence he that desires riches, is able to desire to be rich, not up to a certain limit, but [to desire] simply: that he is to be rich, as much as possible.
Ratio quodammodo est virtutis infinitae, inquantum potest in infinitum aliquid considerare (ut apparet in additione numerorum et linearum). Unde infinitum aliquo modo sumptum, est proportionatum rationi. Nam et universale, quod ratio apprehendit, est quodammodo infinitum, inquantum in potentia continet infinita singularia.
Formal aspect, in a certain sense, is possessed of infinite power, insofar as it can consider a thing infinitely (for example, [in mathematics] in the addition of numbers and lines). Consequently, the infinite, taken in a certain way, is proportionate to formal aspect. In fact the universal, which formal aspect apprehends, is, in a way, infinite, inasmuch as it contains potentially an infinite number of singulars.
Omne quod concupiscitur, accipitur ut quoddam finitum: vel quia est finitum secundum rem, prout semel concupiscitur in actu; vel quia est finitum secundum quod cadit sub apprehensione. Non enim potest sub ratione infiniti apprehendi, quia infinitum est, "cuius quantitatem accipientibus, semper est aliquid extra sumere", ut dicitur in III Physic.
Every object of desire is taken as something finite: either because it is finite in the thing, as being once actually desired; or because it is finite inasmuch as it falls under apprehension. For it cannot be apprehended under the formal aspect of the infinite, since the infinite is that "from which, however much we may take, there always remains something to be taken" (Phys. iii, 6).
Duplex est concupiscentia: una naturalis; et alia non naturalis. Naturalis quidem igitur concupiscentia non potest esse infinita in actu. Est enim eius quod natura requirit; natura vero semper intendit in aliquid finitum et certum. Unde nunquam homo concupiscit infinitum cibum, vel infinitum potum.
Desire is twofold: one is natural; the other is not natural. Natural desire cannot be actually infinite: because it is of that which nature requires; and nature ever tends to something finite and fixed. Hence man never desires infinite meat, or infinite drink.
Sed sicut in natura contingit esse infinitum in potentia per successionem, ita huiusmodi concupiscentiam contingit infinitam esse per successionem; ut scilicet, post adeptum cibum, iterum alia vice desideret cibum; vel quodcumque aliud quod natura requirit: quia huiusmodi corporalia bona, cum adveniunt, non perpetuo manent, sed deficiunt. Unde dixit dominus Samaritanae, Ioan. IV, "qui biberit ex hac aqua, sitiet iterum".
But just as in nature there is potential successive infinity, so can this kind of desire be infinite successively; so that, for instance, after getting food, a man may desire food yet again; and so of anything else that nature requires: because these bodily goods, when obtained, do not last for ever, but fail. Hence Our Lord said to the woman of Samaria (John 4:13): "Whosoever drinketh of this water, shall thirst again."
Philosophus dicit, in I Polit., quod, "in infinitum concupiscentia existente homines infinita desiderant".
The Philosopher says (Polit. i, 3) that "since desire is infinite, men desire an infinite number of things."
Potest et alia ratio assignari, secundum philosophum in I Polit., quare quaedam concupiscentia sit finita, et quaedam infinita: Semper enim concupiscentia finis est infinita, finis enim per se concupiscitur (ut sanitas); unde maior sanitas magis concupiscitur, et sic in infinitum; sicut, si album per se disgregat, magis album magis disgregat.
Another formal aspect may be assigned, according to the Philosopher (Polit. i, 3), why a certain desire is finite, and another infinite: Because desire of the end is always infinite, since the end is desired for its own sake (e.g., health); and thus greater health is more desired, and so on to infinity; just as, if a white thing of itself dilates the sight, that which is more white dilates yet more.
Concupiscentia vero eius quod est ad finem, non est infinita, sed secundum illam mensuram appetitur qua convenit fini. Unde qui finem ponunt in divitiis, habent concupiscentiam divitiarum in infinitum; qui autem divitias appetunt propter necessitatem vitae, concupiscunt divitias finitas, sufficientes ad necessitatem vitae, ut philosophus dicit ibidem. Et eadem est ratio de concupiscentia, quarumcumque aliarum rerum.
On the other hand, desire of the means is not infinite, because the desire of the means is in suitable proportion to the end. Consequently those who place their end in riches have an infinite desire of riches; whereas those who desire riches, on account of the necessities of life, desire a finite measure of riches, sufficient for the necessities of life, as the Philosopher says (Polit. i, 3). The same formal aspect of desire applies to any other things.
Ad hoc quod aliquis delectetur, non requiritur quod omnia consequatur quae concupiscit, sed in quolibet concupito quod consequitur, delectatur.
In order that a man be delighted, there is no need for him to attain all that he desires, for he delights in the attainment of each desired object.